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Abstract

This paper describes a study of the three-dimensional vibration characteristics of thick circular plates resting on

elastic foundation. The analysis is based on the three-dimensional small-strain, linear and exact elasticity theory.

The foundation is described by the Pasternak model. The Ritz method is used to derive the frequency equation of the

plate-foundation system by augmenting the strain energy of the plate with the elastic potential energy of the foundation.

A set of Chebyshev polynomials multiplied by a boundary function is adopted as the admissible functions of

the displacement components in each direction. For plates with free edges, the effect of foundation medium beyond

the edge of the plate has been considered by introducing the generalized shearing force concept in the analysis.

The convergence and comparison studies demonstrate the correctness and accuracy of the present method. It is shown

that the present method has rapid convergent rate, stable numerical operation and very high accuracy.

Parametric investigations on the dynamic behavior of thick circular plates resting on elastic foundation have

been carried out with respect to various thickness–radius ratios, foundation stiffness parameters and boundary

conditions. Results known for the first time have been reported and discussed in detail. Some significant conclusions have

been drawn.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Circular plates [1] have wide applications in various fields of engineering. Sometimes, they are used as
structural elements resting on foundations, such as building footings, base of machines, etc. The Pasternak
model [2] or the two-parameter model is widely adopted to describe the mechanical behavior of foundations,
and the well-known Winkler model [3] is one of its special cases.

A lot of research work about circular plates on elastic foundation can be found in the literature, all of which
is, however, based on the two-dimensional plate theories. Kamal and Durvasula [4] studied the static bending
of a circular plate resting on Pasternak foundation and subjected to uniformly distributed load by using the
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Lanczos method. Zheng and Zhou [5] studied the large deflection of a circular plate resting on
Winkler foundation and subjected to a concentrated load at the center by means of a step-by-step
iterative technique. Celep [6] studied the contact region of circular plates resting on unilateral
Winkler foundation and subjected to arbitrary loads by using the minimization of total potential energy.
Khathlan [7] studied the effect of large deformation on the contact of a circular plate resting on
unilateral Winkler foundation by using the iterative-incremental algorithm. Nassar [8] studied the dynamic
response of circular plates on a linear, viscoelastic half-space by using the Laplace transform. Elishakoff
and Tang [9] studied the buckling of a circular plate on Winkler foundation by using the Rayleigh’s
method. Voyiadjis and Kattan [10] presented a two-dimensional elastostatic theory for thick circular plates
on Winkler foundation to examine the effect of transverse normal strain incorporating the effects
of the transverse shear and normal stress. Ghosh [11] studied the free and forced vibration of circular
plates on Winkler foundation by an exact analytical method. Wang et al. [12] derived the exact axisymmetric
buckling solutions of Reddy circular plates on Pasternak foundation in terms of the corresponding Kirchhoff
solutions. Omurtag et al. [13] used the mixed finite element method to study the free vibration of thin plates on
Pasternak foundation. Later Eratli and Akoz [14] extended this method to the free vibration analysis of
Reissner plates on Pasternak foundation. Buczkowski and Torbacki [15] studied the static bending of Mindlin
plates on Pasternak foundation by using the finite element method. Dumir [16] studied the geometrically
nonlinear response of a circular plate resting on Pasternak foundation and subjected to a uniformly
distributed static or dynamic load by using the point-collocation method for the spatial discretization and the
step-increment method for time. Celep and Turhan [17] studied the response of a circular plate resting on
unilateral Winkler foundation and subjected to a concentrated dynamic load at its center by using the
Galerkin method. However, little has been done on the vibration of circular plates with free edges on
Pasternak foundation.

Two-dimensional theories of plates reduce the dimension of problem from three to two by introducing some
assumptions in mathematical modeling. This results in relatively simple formulation and solution. However,
these simplifications inherently bring about errors and sometimes loss of some modes. Some researchers have
studied the three-dimensional vibration characteristics of circular plates by different methods including the
analytical method [18–21] and Ritz method [22–24]. Again, little has been done on the three-dimensional
vibration of circular plates on elastic foundation. For a thin plate on an elastic foundation, the common
assumption made in most two-dimensional theories that the foundation forces are acting on the median
surface of the plate does not result in significant errors. However, for a thick plate such an assumption is
unreasonable because the foundation stresses are actually acting on the lower surface of the plate, and
therefore the effect on the deformations of the upper and lower surfaces is obviously different [25]. In such a
case, the three-dimensional elasticity theory not only provides realistic results but also allows overall physical
insights [26].

This paper describes an investigation of the three-dimensional free vibration of thick circular
plates resting on Pasternak foundation. The analysis is based on the small-strain, linear and exact
elasticity theory. Using the Chebyshev polynomial series as the admissible functions, the eigenvalue
equation is derived by using the Ritz method. For plates with free edges, the generalized shearing force
concept is introduced to describe the effect of foundation medium beyond the plate. Convergence and
comparison studies verify the accuracy of the present method. Some results known for the first time are
reported.
2. Formulation

Consider a homogeneous isotropic circular plate with a radius R and a thickness h, which is resting on an
elastic foundation as shown in Fig. 1. A cylindrical coordinate system ðr; y; zÞ with the origin o at the plate
center is used to describe the plate displacement. The Pasternak model is used to describe the reaction of the
foundation on the plate. The displacement components of the plate in the r, y and z directions are u, v and w,
respectively.
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Fig. 1. A thick circular plate on elastic foundation.
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Based on the small-strain, linear and exact elasticity theory, the total elastic strain energy V of the plate-
foundation system is given by

V ¼
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where G is the shear modulus, n is the Poisson’s ratio, and k1 is the Winkler foundation stiffness while k2 is the
shear stiffness of the elastic foundation. The strain components eij ði; j ¼ r; y; zÞ are defined as follows:
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The kinetic energy T of the plate can be given as

T ¼
r
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where r is the mass density per unit volume.
For simplicity and convenience in the mathematical formulation, the following dimensionless parameters

are introduced:

r̄ ¼
2r

R
� 1; ȳ ¼ y; z̄ ¼

2z

h
. (4)

For free vibration analysis, the displacement components of the plate can be expressed in terms of the
displacement amplitude functions as follows:

uðr; y; z; tÞ ¼ Uðr̄; ȳ; z̄Þeiot; vðr; y; z; tÞ ¼ V ðr̄; ȳ; z̄Þeiot; wðr; y; z; tÞ ¼W ðr̄; ȳ; z̄Þeiot, (5)

where o denotes the frequency of the plate and i ¼
ffiffiffiffiffiffiffi
�1
p

.
Considering the circumferential symmetry of the circular plate about the coordinate ȳ, the displacement

amplitude functions can be expressed by

Uðr̄; ȳ; z̄Þ ¼ Ūðr̄; z̄Þ cosðsȳÞ; V ðr̄; ȳ; z̄Þ ¼ V̄ ðr̄; z̄Þ sinðsȳÞ; W ðr̄; ȳ; z̄Þ ¼ W̄ ðr̄; z̄Þ cosðsȳÞ, (6)

where s is the circumferential wavenumber, which should be taken to be an integer (namely s ¼ 0; 1; 2; . . . ;1)
to ensure the periodicity in the ȳ direction. It is obvious that s ¼ 0 means axisymmetric vibration. In such a
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case, Uðr̄; ȳ; z̄Þ ¼ Ūðr̄; z̄Þ, V ðr̄; ȳ; z̄Þ ¼ 0, and W ðr̄; ȳ; z̄Þ ¼ W̄ ðr̄; z̄Þ. Rotating the symmetry axes by p=2, another
set of free vibration modes can be obtained, which corresponds to an interchange of cosðsyÞ and sinðsyÞ in
Eq. (6). However, in such a case, s ¼ 0 means Uðr̄; ȳ; z̄Þ ¼ 0, V ðr̄; ȳ; z̄Þ ¼ V̄ ðr̄; z̄Þ, and W ðr̄; ȳ; z̄Þ ¼ 0,
representing torsional vibration.

Substituting Eqs. (4)–(6) into Eqs. (1)–(3) gives the maximum potential energy Vmax and kinetic energy Tmax

of the plate, respectively, as
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2
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in terms of the strains
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and in terms of the parameters
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It is assumed that each of the displacement amplitude functions are separable in variable and can be written in
the form of double series of Chebyshev polynomials multiplied by boundary functions as follows:
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where I, J, K, L, M and N are the truncated orders of the Chebyshev polynomial series and Aij, Bkl and Cmn are
coefficients yet to be determined. PiðwÞ (i ¼ 1, 2, 3,y; w ¼ r̄; z̄) is the ith one-dimensional Chebyshev
polynomial which can be written exactly in terms of cosine functions as follows:

PiðwÞ ¼ cos½ði � 1Þ arccosðwÞ� ði ¼ 1; 2; 3; . . .Þ. (11)

The boundary functions F uðr̄Þ, F vðr̄Þ and Fwðr̄Þ should enable the displacement components u, v and w to
satisfy the geometric boundary conditions of the plate. However, the stress boundary conditions need not be
satisfied in advance. The boundary functions corresponding to common boundary conditions are given in
Table 1.
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Table 1

Boundary functions for different boundary conditions

Boundary conditions Fuðr̄Þ Fvðr̄Þ Fwðr̄Þ

Clamped 1þ r̄ 1þ r̄ 1þ r̄

Completely free 1 1 1

Hard simply supported 1 1þ r̄ 1þ r̄

Sliding 1þ r̄ 1 1

Soft simply supported 1 1 1þ r̄
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It should be noted that Chebyshev polynomial series PiðwÞ (i ¼ 1, 2, 3,y) is a set of complete and
orthogonal series in the interval [�1,1]. This therefore ensures that the double series Piðr̄ÞPjðz̄Þ (i, j ¼ 1, 2, 3,y)
is also a complete and orthogonal set in the plate region. The excellent properties of Chebyshev polynomial
series in the approximation of functions are well known [27]. Therefore, more rapid convergence and better
stability in numerical operation than other polynomial series can be expected [26].

It should be mentioned that Eq. (1) is only suitable for plates with zero vertical displacements along the
plate edge at r ¼ R and z ¼ �h=2, e.g. clamped or simply supported plates; otherwise a generalized shearing
force should be considered in the analysis [28]. Beyond the edge of the plate, the differential equation of the
foundation is

k2
q2we

qr2
þ

1

r

qwe

qr
þ

1

r2
q2we

qy2

� �
� k1we ¼ 0, (12)

where we is the normal displacement of the soil medium. The general solution of the above equation can be
easily obtained as

weðr; y; tÞ ¼ eiotW eðr; yÞ ¼ eiot½A1sI sðarÞ þ B1sKsðarÞ� cosðsyÞ, (13)

where A1s and B1s are unknown coefficients, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k2

p
, and IsðarÞ and KsðarÞ are the first and second kinds

of modified Bessel functions of order s, respectively. Rotating the symmetry axes by p=2, another set of free
vibration modes can be obtained, which corresponds to an interchange of cosðsyÞ and sinðsyÞ in the above
equation.

At infinite values of r, the displacements of the soil medium should be zero. It is clear that I sðarÞ is a
monotonically increasing function with respect to r. Therefore, one has

W eðr; yÞ ¼ B1sKsðarÞ cosðsyÞ ¼ W̄ eðrÞ cosðsyÞ. (14)

According to the continuity of vertical foundation displacements at the plate edge, one has

W jr̄¼1;z̄¼�1 ¼W ejr¼R. (15)

Substituting Eqs. (6) and (14) into the above equation, one has
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1
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As pointed out by Selvadurai [28], the generalized shearing force due to the shearing stresses in the soil
medium extending beyond the boundary of the foundation can be given as
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where _KsðaRÞ ¼ ½dKsðxÞ=dx�x¼aR and aR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1=F2

p
. Observing the above equation, one can find that the

generalized shearing force acts as translational springs distributed along the plate edge at r ¼ R and z ¼ �h=2
while the equivalent spring stiffness per unit length is just equal to k3G.
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In such a case, a complimentary potential energy V b
max provided by the boundary spring k3G should be

added into the potential energy of the plate-foundation system

V b
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2
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Z 2p

0
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Gh

2
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2
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where F3 ¼ k3=g.
The energy functional of the plate is defined as follows:

P ¼ Vmax � Tmax (19a)

for a plate having zero vertical displacements at the plate edge at r̄ ¼ 1 and z̄ ¼ �1, and

P ¼ Vmax þ Vb
max � Tmax (19b)

for a plate having vertical displacements at the plate edge at r̄ ¼ 1 and z̄ ¼ �1.
Minimizing P with respect to the coefficients, i.e.
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leads to the following eigenvalue equation:
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In particular, it can be simplified for axisymmetric mode as
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; s ¼ 0 (22)

and for torsional mode as

ð½Kvv� � O2½Mvv�ÞfBg ¼ f0g; s ¼ 0 (23)

in which O ¼ oR
ffiffiffiffiffiffiffiffiffi
r=G

p
, and ½Kij � and ½Mij � ði; j ¼ u; v;wÞ are the stiffness sub-matrices and the diagonal mass

sub-matrices, respectively. A detailed description of the elements in the eigenvalue equation is given in the
Appendix.

A non-trivial solution is obtained by setting the determinant of the coefficient matrix of Eqs. (21)–(23) to
zero, respectively. The roots of the determinant are the square of the eigenvalue or dimensionless natural
frequency O. The eigenfunctions, or the mode shapes, corresponding to the respective natural frequencies are
determined by back-substitution of the eigenvalues, one by one, in the usual manner.

3. Convergence and comparison study

All natural frequencies obtained from the Ritz method are upper bounds of the exact ones, and therefore
convergence should be monotonic from above as the number of terms of the admissible functions increases.
The convergence study was carried out for circular plates with Poisson’s ratio n ¼ 0:3 and resting on a
Pasternak foundation with stiffness parameters F1 ¼ 100 and F2 ¼ 10. For simplicity, equal numbers of terms
of the Chebyshev polynomial series were used for the displacement amplitude functions U, V and W, i.e.
I ¼ K ¼M and J ¼ L ¼ N, although in most cases, using unequal numbers of terms may result in more rapid
convergence with less computational cost. It is obvious that the torsional vibration of the plate is independent
of the foundation described by the Pasternak model, which has been well reported in the literature [26].
Therefore in the following analysis, attention will concentrate on the axisymmetric vibration ðs ¼ 0Þ and the
circumferential vibrations ðs40Þ. The convergence rates of the first six frequency parameters for s ¼ 0; 1; 2; 3
with respect to four different combinations of number of terms of Chebyshev polynomials have been checked
for circular plates with three kinds of boundary conditions and different thickness ratios. Table 2 gives the
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Table 2

Convergence of the first six frequency parameters for a completely free circular plate with n ¼ 0:3 and g ¼ 0:3, resting on Pasternak

foundation with F1 ¼ 100 and F2 ¼ 10

I � J O1 O2 O3 O4 O5 O6

s ¼ 0

6� 3 3.397 7.406 7.784 8.926 9.864 10.742

8� 4 3.397 7.376 7.587 8.863 9.634 10.610

10� 5 3.397 7.376 7.583 8.762 9.640 10.601

15� 8 3.397 7.376 7.583 8.762 9.640 10.601

s ¼ 1

6� 3 2.726 5.652 6.758 7.803 8.451 9.265

8� 4 2.726 5.647 6.742 7.655 8.338 9.102

10� 5 2.726 5.647 6.742 7.652 8.337 9.099

15� 8 2.726 5.647 6.742 7.652 8.337 9.099

s ¼ 2

6� 3 2.345 4.203 6.969 7.817 8.344 9.466

8� 4 2.345 4.203 6.946 7.683 8.242 9.254

10� 5 2.345 4.203 6.946 7.681 8.241 9.252

15� 8 2.345 4.203 6.946 7.681 8.241 9.251

s ¼ 3

6� 3 3.599 5.693 7.698 8.271 9.474 10.564

8� 4 3.599 5.688 7.625 8.130 9.400 10.141

10� 5 3.599 5.688 7.623 8.128 9.399 10.133

15� 8 3.599 5.688 7.523 8.128 9.399 10.132

Table 3

Convergence of the first six frequency parameters for a clamped circular plate with n ¼ 0:3 and g ¼ 0:2, resting on Pasternak foundation

with F1 ¼ 100 and F2 ¼ 10

I� J O1 O2 O3 O4 O5 O6

s ¼ 0

8� 3 6.416 10.644 12.725 13.036 14.202 14.728

10� 4 6.412 10.611 12.640 12.906 14.039 14.535

15� 5 6.411 10.609 12.638 12.903 14.034 14.526

20� 7 6.410 10.608 12.638 12.903 14.033 14.525

s ¼ 1

8� 3 3.331 5.370 8.408 8.798 11.651 11.857

10� 4 3.330 5.370 8.405 8.790 11.630 11.815

15� 5 3.329 5.370 8.404 8.789 11.629 11.814

20� 7 3.329 5.370 8.404 8.788 11.629 11.813

s ¼ 2

8� 3 5.176 6.890 9.817 10.497 12.585 13.243

10� 4 5.173 6.889 9.813 10.472 12.506 13.181

15� 5 5.172 6.889 9.812 10.470 12.505 13.180

20� 7 5.172 6.889 9.812 10.469 12.504 13.180

s ¼ 3

8� 3 6.717 8.428 11.073 11.746 13.303 14.665

10� 4 6.713 8.424 11.054 11.705 13.186 14.466

15� 5 6.712 8.423 11.053 11.703 13.184 14.458

20� 7 6.711 8.423 11.053 11.702 13.184 14.456

D. Zhou et al. / Journal of Sound and Vibration 292 (2006) 726–741732
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Table 4

Convergence of the first six frequency parameters for a soft simply supported circular plate with n ¼ 0:3 and g ¼ 0:1, resting on Pasternak

foundation with F1 ¼ 100 and F2 ¼ 10

I � J O1 O2 O3 O4 O5 O6

s ¼ 0

10� 2 3.460 9.028 14.137 18.836 23.002 25.891

15� 3 3.459 9.015 14.049 18.411 21.578 23.696

20� 4 3.459 9.015 14.045 18.388 21.505 23.578

25� 6 3.459 9.015 14.045 18.387 21.504 23.576

s ¼ 1

10� 2 2.741 5.948 6.836 9.948 11.510 13.188

15� 3 2.739 5.945 6.835 9.947 11.477 13.178

20� 4 2.739 5.945 6.835 9.947 11.476 13.178

25� 6 2.739 5.945 6.835 9.947 11.476 13.178

s ¼ 2

10� 2 2.346 4.259 7.626 8.754 11.414 13.698

15� 3 2.346 4.256 7.621 8.749 11.412 13.628

20� 4 2.346 4.255 7.621 8.749 11.411 13.625

25� 6 2.346 4.255 7.621 8.749 11.411 13.625

s ¼ 3

10� 2 3.604 5.855 9.029 10.676 12.870 15.576

15� 3 3.603 5.849 9.022 10.661 12.859 15.467

20� 4 3.603 5.848 9.021 10.660 12.859 15.462

25� 6 3.603 5.848 9.021 10.660 12.859 15.462

Table 5

Comparison of the first five frequency parameters l for a clamped thin circular plate ðg ¼ 0:001Þ on a Winkler foundation (F1 ¼ 10�6,

F2 ¼ 0) with those from the classical plate theory

s Methods l1 l2 l3 l4 l5

0 Present 65.605 76.042 110.20 170.98 255.42

Classical 65.608 76.038 110.18 170.94 255.37

1 Present 68.207 88.893 136.48 209.38 304.80

Classical 68.205 88.877 136.45 209.34 304.74

2 Present 73.602 106.57 166.95 251.28 357.34

Classical 73.598 106.55 166.91 251.21 357.31

3 Present 82.496 128.58 201.08 296.42 412.93

Classical 82.493 128.54 201.03 296.34 412.84
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results of convergence study of a free circular plate with the thickness–radius ratio g ¼ 0:3. Table 3 gives the
results of convergence study of a clamped circular plate with the thickness–radius ratio g ¼ 0:2. Table 4 gives
the results of convergence study of a soft simply supported circular plate with the thickness–radius ratio
g ¼ 0:1. It is shown that convergence is satisfactory. Taking the free circular plate as an example, 10� 5 terms
of the Chebyshev polynomials can give the first six frequency parameters at least accurate to four significant
figures. In general, with the increase of the plate thickness, more terms of the Chebyshev polynomials in the
thickness direction and fewer terms in the radial direction are needed.

Table 5 shows the results of a comparison study for a clamped thin circular plate with thickness–radius ratio
g ¼ 0:001, which is resting on a Winkler foundation with the stiffness parameters F1 ¼ 10�6 and F2 ¼ 0. To be
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consistent with the presentation of results from two-dimensional analysis, the dimensionless frequency
parameter l ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is used here. The classical solution of a plate resting on Winkler foundation can be

directly derived from the classical solutions l̂ [1] of the plate without foundation, i.e. l2 ¼ l̂
2
þ k1R

4=D. The
first five frequency parameters, respectively, for circumferential wavenumber s ¼ 0; 1; 2; 3 were presented. Very
good agreement is observed.
4. Parametric study

The numerical procedure of the three-dimensional elasticity solution developed in the previous section is
applied to extract the vibration frequencies and mode shapes of the plate-foundation system. In the following
computations, the Poisson’s ratio is taken as n ¼ 0:3.

Table 6 gives the first five frequency parameters O of axisymmetric vibration ðs ¼ 0Þ and circumferential
vibrations ðs ¼ 1; 2Þ for a thick circular plate with the thickness–radius ratio g ¼ 0:25. Two groups of different
foundation stiffness parameters, namely (a) F1 ¼ 10 and F2 ¼ 1, and (b) F1 ¼ 100 and F2 ¼ 10, and three
kinds of boundary conditions, namely (a) clamped, (b) free, and (c) hard simply supported, are considered. A
clamped circular plate with thickness–radius ratio g ¼ 0:3 resting on Winkler foundation ðF2 ¼ 0Þ is analyzed.
Figs. 2–4 show the effects of foundation stiffness on the first four frequency parameters, respectively, for
s ¼ 0; 1; 2. From Table 6 and Figs. 2–4, it is observed that with the increase of the foundation stiffness, the
frequency parameters monotonically increase. Moreover, it is seen that with the increase in foundation
stiffness, the frequency parameters all approach constant values sooner or later according to their order.
However, this phenomenon is not observed with the use of two-dimensional approximate theories such as the
classical plate theory and the first-order shear deformation theory. Using these simplified methods for
analysis, the frequency parameters keep on increasing and therefore infinite foundation stiffness implies
infinite frequencies. It is clear that for a thick plate, such a conclusion is obviously wrong. This is because with
the increase in plate thickness, a plate with free boundary conditions tends to act as a beam with sliding-free
ends. In the two-dimensional theories, the foundation is assumed to be acting on the median surface of the
Table 6

The first five frequency parameters O for a thick circular plate ðg ¼ 0:25Þ on two different Pasternak foundations

s F1,F2 O1 O2 O3 O4 O5

Plate with clamped edge

0 10,1 6.082 7.001 8.498 10.101 11.965

100,10 6.330 9.540 10.507 11.093 12.477

1 10,1 3.330 5.366 7.300 8.515 8.777

100,10 3.331 5.368 8.190 8.603 10.325

2 10,1 5.163 6.848 8.233 9.872 9.965

100,10 5.168 6.870 9.300 10.010 10.909

Plate with completely free edge

0 10,1 3.410 6.314 7.242 8.349 9.855

100,10 3.419 8.044 9.094 10.091 10.705

1 10,1 2.728 5.637 6.719 7.427 8.000

100,10 2.729 5.778 6.787 9.043 9.264

2 10,1 2.345 4.215 6.866 8.012 8.316

100,10 2.345 4.219 7.313 8.316 9.261

Plate with hard simply supported edge

0 10,1 3.416 6.603 7.485 9.619 10.112

100,10 3.424 8.057 10.145 10.254 11.440

1 10,1 1.162 5.309 5.783 7.808 8.519

100,10 1.162 5.310 5.911 8.533 9.192

2 10,1 2.425 6.670 7.180 9.449 9.521

100,10 2.425 6.672 7.660 9.957 10.017
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Fig. 3. The first four frequency parameters of circumferential vibration for s ¼ 1 for a clamped circular plate with thickness–radius ratio

g ¼ 0:3 and resting on Winkler foundation.
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Fig. 2. The first four frequency parameters of axisymmetric vibration for a clamped circular plate with thickness–radius ratio g ¼ 0:3 and

resting on Winkler foundation.
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Fig. 4. The first four frequency parameters of circumferential vibration for s ¼ 2 for a clamped circular plate with thickness–radius ratio

g ¼ 0:3 and resting on Winkler foundation.
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plate but not on the lower surface. Therefore even for a thin plate, provided that the foundation stiffness is
sufficiently large, the two-dimensional theories still give erroneous results. With the increase of the foundation
stiffness, the frequencies of the flexural modes increase accordingly. However, the frequencies of the
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extensional modes, which cannot be analyzed by the thin plate theory or the moderately thick plate theory,
vary very slowly. Therefore, with an increase in the foundation stiffness, the frequencies of the extensional
modes, which originally fall into the band of the higher-order frequencies, enter into the band of the lower-
order frequencies of the plate. Take a clamped thin plate with the thickness–radius ratio g ¼ 0:01 resting on
Winkler foundation ðF2 ¼ 0Þ as an example. For a foundation having a stiffness parameter F1 ¼ 1, the three-
dimensional elasticity theory gives the first frequency parameter of the axisymmetric mode as l ¼ 1327:6, but
the classical plate theory gives l ¼ 2049:4. However, when the stiffness parameter increases to F1 ¼ 1000, the
three-dimensional elasticity theory and the classical plate theory give the first frequency parameter of the
axisymmetric mode as l ¼ 1327:9 and l ¼ 64807:4, respectively. This phenomenon can also be observed from
Table 6 and Figs. 2–4. Taking Fig. 3 as an example, for a foundation having a stiffness parameter F1 ¼ 0:1,
the first and third frequencies of the plate are the flexural modes while the second and fourth frequencies of the
plate are the extensional modes. With further increase in foundation stiffness, the frequencies of the flexural
modes increase gradually while those of the extensional modes stay very much the same. For F142, the
fundamental frequency of the extensional modes falls below the fundamental frequency of the flexural modes,
while for F1410, the second frequency of the extensional modes also falls below the fundamental frequency of
the flexural modes. In such a case, the first two frequencies of the plate entirely belong to the extensional
modes.
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Fig. 5. The first two frequency parameters of axisymmetric vibration: clamped plates: B first mode, & second mode; completely free

plates: n first mode, � second mode; hard simply supported plates: + first mode, J second mode.
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Fig. 6. The first two frequency parameters of circumferential vibration for s ¼ 1: clamped plates: B first mode, & second mode;

completely free plates: n first mode, � second mode; hard simply supported plates: + first mode, J second mode.
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Fig. 7. The first two frequency parameters of circumferential vibration for s ¼ 2; clamped plates: B first mode, & second mode;

completely free plates: n first mode, � second mode; hard simply supported plates: + first mode, J second mode.

D. Zhou et al. / Journal of Sound and Vibration 292 (2006) 726–741 737
Figs. 5–7 show the effects of the plate thickness–radius ratio on the first two frequency parameters of the
axisymmetric vibrations and circumferential vibrations ðs ¼ 1; 2Þ; respectively. The Pasternak foundation
stiffness parameters are taken as F1 ¼ 200 and F2 ¼ 20. Three kinds of boundary conditions, namely (a)
clamped, (b) completely free, and (c) hard simply supported, are considered. It can be seen that with the
increase of the thickness–radius ratio, the frequency parameters decrease monotonically. However, the
fundamental frequency parameters, except for the axisymmetric vibration of clamped plates, are relatively
insensitive to changes in the plate thickness.

Fig. 8 gives the fundamental mode shape W at the upper and lower surfaces for axisymmetric vibration of a
clamped circular plate with the thickness–radius ratio g ¼ 0:25. Two kinds of foundation stiffness parameters
are considered: (a) F1 ¼ 10 and F2 ¼ 1, and (b) F1 ¼ 50 and F2 ¼ 5. These mode shapes are compared with
those without foundation when the mode shapes at the upper and lower surfaces should be the same. It is
observed that the displacement at the lower surface is always smaller than that at the upper surface, and the
difference between the displacements at the lower and upper surfaces increases with the increase of foundation
stiffness. For a very stiff foundation, the displacement at the lower surface in the z direction is close to zero.

For plates with free edges, the effect of medium beyond the plate edge on frequency parameters has been
evaluated by considering plates with thickness–radius ratios g ¼ h=R ¼ 0:1 and g ¼ h=R ¼ 0:2. The results for
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Table 7

The effect of medium beyond the plate edge on the first six frequency parameters of a free circular plate with thickness-radius ratio g ¼ 0:1

F1,F2 O1 O2 O3 O4 O5 O6

s ¼ 0

10,1 3.456 8.986 10.912 13.841 15.304 17.811

(3.456)a (8.929) (9.615) (13.588) (14.346) (17.742)

10,5 3.457 9.007 13.428 14.095 18.317 21.186

(3.456) (8.947) (9.618) (14.050) (18.307) (20.661)

100,10 3.457 9.014 14.042 18.374 21.468 22.853

(3.457) (9.013) (14.036) (18.345) (21.276) (22.233)

100,50 3.457 9.015 14.051 18.412 21.551 23.043

(3.457) (9.014) (14.047) (18.385) (21.340) (22.260)

s ¼ 1

10,1 2.733 5.940 6.834 9.946 11.389 12.752

(2.733) (5.938) (6.833) (9.945) (10.735) (11.569)

10,5 2.733 5.942 6.835 9.946 11.462 13.177

(2.733) (5.941) (6.834) (9.946) (11.462) (13.177)

100,10 2.733 5.943 6.835 9.946 11.474 13.177

(2.733) (5.943) (6.835) (9.946) (11.473) (13.177)

100,50 2.733 5.943 6.835 9.946 11.478 13.177

(2.733) (5.943) (6.835) (9.946) (11.477) (13.177)

s ¼ 2

10,1 2.346 4.241 7.612 8.737 11.406 13.450

(2.346) (4.241) (7.609) (8.732) (11.406) (12.529)

10,5 2.346 4.241 7.616 8.747 11.408 13.605

(2.346) (4.241) (7.615) (8.746) (11.408) (13.589)

100,10 2.346 4.241 7.617 8.749 11.409 13.623

(2.346) (4.241) (7.617) (8.748) (11.409) (13.620)

100,50 2.346 4.241 7.617 8.749 11.409 13.631

(2.346) (4.241) (7.617) (8.749) (11.409) (13.630)

aNote: Entries in parentheses are those when the effect of medium beyond the plate edge is ignored.
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four groups of foundation stiffness parameters are compared with those obtained by ignoring the effect of
medium beyond the plate edge. The first six frequency parameters for axisymmetric vibration ðs ¼ 0Þ and
circumferential vibrations ðs ¼ 1; 2Þ are given in Tables 7 and 8, respectively. It is observed that when the effect
of medium beyond the plate edge is taken into account, the natural frequencies of the plate-foundation system
are always higher than those when the effect is ignored. For most modes, the influence of the medium beyond
the plate edge on vibration characteristics of the plate-foundation system is insignificant. However, for some
special modes, the effect of medium beyond the plate edge on frequencies is significant. For examples, for
foundation stiffness parameters F1 ¼ 10 and F2 ¼ 5, the frequencies of the third axisymmetric mode for a
plate with thickness–radius ratio g ¼ 0:1 and the second axisymmetric mode for a plate with thickness–radius
ratio g ¼ 0:2 are at least 25% higher than those when the effect of medium beyond the plate edge is ignored.
This means that for these modes, the potential energies provided by the generalized shear forces are significant
and cannot be ignored in the analysis.

5. Conclusions

An accurate method for three-dimensional vibration analysis of thick circular plates resting on Pasternak
foundation has been presented. By using the Chebyshev polynomial series multiplied by a boundary function
as the admissible functions, which satisfies the geometric boundary conditions a priori, an accurate governing
frequency equation is derived by the energy functional of the plate-foundation system using the Ritz method.
For plates with free edges, the effect of medium beyond the plate edge has been considered by introducing the
generalized shear force concept. Convergence and comparison studies demonstrate the accuracy and
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Table 8

The effect of medium beyond the plate edge on the first six frequency parameters of a free circular plate with thickness-radius ratio g ¼ 0:2

F1,F2 O1 O2 O3 O4 O5 O6

s ¼ 0

10,1 3.432 7.252 8.134 9.879 10.661 11.125

(3.430)a (6.447) (8.051) (9.210) (10.656) (11.056)

10,5 3.434 8.356 8.895 11.043 11.558 12.516

(3.431) (6.449) (8.599) (10.881) (11.527) (12.362)

100,10 3.436 8.560 11.336 11.508 12.844 13.282

(3.436) (8.551) (11.247) (11.502) (12.547) (13.242)

100,50 3.436 8.579 11.447 11.578 13.209 13.581

3.436 8.569 11.384 11.559 12.579 13.522

s ¼ 1

10,1 2.731 5.810 6.791 8.359 9.340 9.991

(2.731) (5.773) (6.771) (7.351) (9.232) (9.986)

10,5 2.731 5.849 6.808 9.848 10.103 10.929

(2.731) (5.837) (6.805) (9.090) (9.921) (10.465)

100,10 2.731 5.861 6.811 9.894 10.300 11.424

(2.731) (5.860) (6.811) (9.889) (10.278) (11.367)

100,50 2.731 5.863 6.812 9.901 10.348 11.520

(2.731) (5.862) (6.812) (9.899) (10.338) (11.505)

s ¼ 2

10,1 2.346 4.228 7.361 8.332 9.664 10.236

(2.346) (4.227) (7.212) (8.142) (8.834) (10.226)

10,5 2.346 4.229 7.476 8.522 10.890 11.387

(2.346) (4.229) (7.461) (8.507) (10.544) (11.328)

100,10 2.346 4.230 7.494 8.548 11.051 11.487

(2.346) (4.229) (7.492) (8.547) (11.008) (11.487)

100,50 2.346 4.230 7.499 8.557 11.105 11.534

(2.346) (4.230) (7.498) (8.556) (11.096) (11.533)

aNote: Entries in parentheses are those when the effect of medium beyond the plate edge is ignored.
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numerical stability of the present method. The effects of various parameters such as the thickness–radius ratio
and the foundation stiffness parameters on natural frequencies of the plate-foundation system are studied in
detail. Some results known for the first time are given in tabular and graphical forms. It is shown that for the
vibration analysis of plates resting on foundation, the validity of two-dimensional approximate theories such
as the classical plate theory and the first-order shear deformation plate theory not only depends on the
thickness of the plate but also the foundation stiffness.
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Appendix

The column vectors fAg, fBg and fCg are composed of unknown coefficients as follows:

fAg ¼ fA11 � � � A1J A21 � � � A2J � � � AI1 � � � AIJ g
T,

fBg ¼ fB11 � � � B1L B21 � � � B2L � � � BK1 � � � BKL g
T,

fCg ¼ fC11 � � � C1N C21 � � � C2N � � � CM1 � � � CMN g
T. ð24Þ
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The elements of the sub-matrices ½Kij � and ½Mij � ði; j ¼ u; v;wÞ are given by

½Kuu� ¼
1� n
1� 2n

ðD111
uiuī
þD00�1

uiuī
ÞH00

ujuj̄
þ

n
1� 2n

ðD010
uiuī
þD100

uiuī
ÞH00

ujuj̄

þ
1

2g2
ðs2g2D00�1

uiuī
H00

ujuj̄
þD001

uiuī
H11

ujuj̄
Þ,

½Kuv� ¼
ð1� nÞs
1� 2n
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H00
ujvl̄
þ

ns

1� 2n
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H00

ujvl̄
þ

s

2
ðD00�1

uivk̄
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ÞH00

ujvl̄
,
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n

ð1� 2nÞg
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uiwm̄ÞH

01
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1

2g
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ð1� nÞs2
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1

2
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1� n
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for a plate having zero vertical displacements at r̄ ¼ 1; z̄ ¼ �1,

½Kww� ¼
1� n
ð1� 2nÞg2

D001
wmwm̄H11

wnwn̄ þ
1

2
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001
wmwm̄ þ F2D

111
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for a plate having non-zero vertical displacements at r̄ ¼ 1; z̄ ¼ �1,

½Muu� ¼ D001
uiuī

H00
ujuj̄
=8; ½Mvv� ¼ D001

vkvk̄
H00

vlvl̄
=8; ½Mww� ¼ D001

wmwm̄H00
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in which

Dabc
asbt ¼

Z 1

�1

da
½F aðr̄ÞPsðr̄Þ�

dr̄a

db
½Fbðr̄ÞPtðr̄Þ�

dr̄b
ðr̄þ 1Þc dr̄,

Hab
asbt ¼

Z 1

�1

daPsðz̄Þ

dz̄a

dbPtðz̄Þ

dz̄b
dz̄; a; b ¼ 0; 1; c ¼ 0; 1;�1,

a; b ¼ u; v;w; s ¼ i; k;m; j; l; n; t ¼ ī; k̄; m̄; j̄; l̄; n̄. ð26Þ
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